
QuCloud: A New Qubit Mapping Mechanism for Multi-programming
Quantum Computing in Cloud Environment

Lei Liu∗, Xinglei Dou
Sys-Inventor Lab, SKLCA, ICT, CAS

Abstract—For a specific quantum chip, multi-programming
improves overall throughput and resource utilization. Previous
studies on mapping multiple programs often lead to resource
under-utilization, high error rate, and low fidelity. This paper pro-
poses QuCloud, a new approach for mapping quantum programs
in the cloud environment. We have three new designs in QuCloud.
(1) We leverage the community detection technique to partition
physical qubits among concurrent quantum programs, avoiding
the waste of robust resources. (2) We design X-SWAP scheme that
enables inter-program SWAPs and prioritizes SWAPs associated
with critical gates to reduce the SWAP overheads. (3) We propose
a compilation task scheduler that schedules concurrent quantum
programs to be compiled and executed based on estimated fidelity
for the best practice. We evaluate our work on publicly available
quantum computer IBMQ16 and a simulated quantum chip
IBMQ50. Our work outperforms the state-of-the-art work for
multi-programming on fidelity and compilation overheads by
9.7% and 11.6%, respectively.

I. INTRODUCTION
Quantum computers have gradually entered our field of

vision. Due to its potential in various critical applications,
such as machine learning [5], [19], database search [11] and
chemistry simulation [14], [25], many companies, universities
and institutes are actively working to develop prototypes
of quantum computer systems. In recent years, Google has
released their quantum chip with 72 quantum bits (qubits) [15],
which has more qubits than those of IBM (50 qubits) [16] and
Intel (49 qubits) [12]. IBM announced its quantum chip with
53 qubits accessible via the cloud [10]. The latest photonic
quantum computer Jiuzhang [33] generates up to 76 output
photon clicks. However, modern quantum chips belong to the
Noisy Intermediate-Scale Quantum (NISQ) category [26] – the
qubits and the links between them are with variational reliability
and are easily disturbed; therefore, quantum computers are
susceptible to errors. Though quantum computers can be made
fault-tolerant leveraging quantum error correction (QEC) codes,
such codes are too expensive (20 to 100 physical qubits to
form a fault-tolerant logical qubit) to be implemented on NISQ
computers [9].

The emergence of quantum cloud services enables users
to easily access quantum computers, but it also brings new
challenges. As NISQ computers exhibit low fidelity, the small-
sized programs using a few qubits can have high-quality results.
NISQ computers tend to have a lower resource utilization as a
result. With the rapid development of quantum computers,
hundreds of qubits would be on a specific quantum chip.
Still, qubits’ reliability is challenging to be further improved.
Moreover, as more and more people would like to use quantum
computers, the growing access to quantum computing cloud
service prolongs the service time. Therefore, it is necessary to
∗Corresponding author (PI): lei.liu@zoho.com; liulei2010@ict.ac.cn.

increase the resource utilization and throughput of quantum
computers. Multi-programming can be an effective way of
doing this. Although mapping multiple quantum programs onto
a specific quantum chip improves the throughput, the activity
of a program can adversely affect the reliability of co-located
programs because of (i) a limited number of qubits with high
fidelity, (ii) cross-talk noise caused by simultaneously executed
quantum gates [22] and (iii) long SWAP paths. Previous
study [7] on multi-programming shows that running multiple
quantum programs on a specific quantum chip incurs a 12.0%
reduction on fidelity, on average.

In this paper, we propose solutions to improve the throughput
and utilization of NISQ machines in cloud environment while
reducing the negative impacts on multi-programming NISQ
computers’ reliability. We find the previous qubit mapping
policies have several shortcomings when handling multi-
programming cases. (1) The existing mapping policies often
divide a large area of robust on-chip qubits into many small-
scale segments that other programs cannot map onto. In many
cases, over 20% of the robust qubits are wasted during the initial
mapping. (2) When a specific quantum chip is partitioned for
mapping multiple quantum programs, post-compilation SWAP
operations for each quantum program can increase, leading to
an unpredictable impact for fidelity and reliability. For instance,
additional SWAPs can be involved when two quantum programs
with tens of CNOT gates are compiled together. (3) Scheduling
concurrent quantum applications for multi-programming on a
specific quantum chip can be a challenging job, which may
lead to fidelity degradation and qubit resource under-utilization
in the cloud environment.

To this end, we design QuCloud, a new qubit mapping
mechanism for multi-programming in the cloud. QuCloud has
several key features. (1) It partitions the physical qubits for
concurrent quantum programs leveraging community detection
technique [23], avoiding the waste caused by the topology-
unaware algorithms. It also provides a better initial-mapping,
which reduces the SWAP overheads. (2) QuCloud is the first
work that clearly enables the inter-program SWAPs to solve
the qubit mapping problem in multi-programming cases that
reduces the overall SWAP overheads. The experimental results
show that QuCloud outperforms the latest solution [7] by 9.7%
on fidelity and 11.6% on compilation overheads. (3) QuCloud
has a scheduler for scheduling compilation tasks for the
best practice of multi-programming, avoiding the performance
degradation caused by randomly selected workloads. The
scheduler improves the throughput by 42.9% and enhances
the fidelity by 5.0% over random workloads chosen in our
experiments. In essence, we think that QuCloud contains the
prototype of the OS for quantum computers – QuOS.

1

Figure 1. Bloch sphere representation of a qubit.

To sum up, we make the following contributions in QuCloud.
(1) We observe that the previous qubit mapping policies
cannot make full utilization of resources when multiple
quantum programs are mapped on a specific quantum chip
simultaneously. (2) We reveal that, rather than the separate
execution cases, the number of SWAP operations increases
significantly when multiple quantum programs are running
together. (3) We propose a new qubit mapping approach (i.e.,
CDAP), which provides better mapping solutions than the
latest work for co-located quantum programs. Furthermore,
we design X-SWAP, the first inter-program SWAP mechanism,
significantly reducing the SWAP overheads. (4) We propose
a compilation task scheduler that provides optimal quantum
program combinations for multi-programming, improving the
fidelity and resource utilization on quantum chips.

II. BACKGROUND
In this section, we introduce some concepts about quantum

computing and quantum computers. We also present the
relevant background of quantum cloud services to illustrate
why multi-programming is necessary.
A. Quantum mechanism

Quantum computing can solve conventionally hard problems
leveraging quantum mechanism [28]. The foundation of quan-
tum computing lies on qubits. As shown in Figure 1, the Bloch
sphere is used to represent the state of a single qubit. The north
and south poles of the sphere represent the |0〉 and |1〉 states of
the qubit, respectively, corresponding to the 0 and 1 in classical
bits. The state of a qubit can be the linear combinations of
|0〉 and |1〉 as |ψ〉 = α |0〉 + β |1〉, where α, β are complex
numbers with |α|2 + |β|2 = 1. The state of a qubit can be
manipulated with single-qubit gates, e.g., H, X, Z, etc. When
the qubit is measured, the state of the qubit collapses to either
|0〉 with the probability of |α|2, or |1〉 with the probability
of |β|2. Two or more qubits can be entangled with two-qubit
gates, i.e., Control-NOT (CNOT) gates. A CNOT gate flips the
state of the target qubit when the control qubit is in the state
|1〉. Likewise, the state of a two-qubit system is represented by:
|ψ〉 = α00 |00〉 + α01 |01〉 + α10 |10〉 + α11 |11〉. A quantum
gate involving three or more qubits can be decomposed with
single- and two-qubit gates [4].

Figure 2. Architecture of IBM Q16 Melbourne.

Figure 3. The Quantum circuit and DAG of decomposed Toffoli gate.

B. Quantum computers
There are several competing technologies for the implemen-

tation of quantum computers, e.g., ion-trap [8], superconducting
quantum circuits [17] and photonic quantum devices [33]. IBM
quantum processors are superconducting quantum chips with
Josephson-junction-based transmon qubits [17] and microwave-
tunable two-qubit gates [27]. Unlike the all-to-all connectivity
of qubits on ion-trap quantum computers, the physical qubits
on IBM quantum chips only have connections to neighboring
qubits. For example, Figure 2 shows the architecture of IBM
Q16 Melbourne (denoted as IBMQ16 hereafter).
C. Errors on quantum computers

NISQ computers face reliability challenges. As the physical
qubits are fragile and susceptible to interference, the following
kinds of errors may occur in quantum programs running on
quantum computers. (i) Coherence errors caused by short
qubit state retention time. (ii) Operational errors caused by
error-prone quantum gates. (iii) Readout errors caused by
measurement operations. In practice, the error rate and the
coherence time are all reported in IBM backends calibration
data [1]. The error rates are variational for different qubits,
links, and days. Variation-aware mapping policies tend to map
quantum programs onto the region with the lowest error rate.
D. Quantum programs and Quantum circuits

Quantum programs can be converted into quantum circuits
composed of a series of quantum gates. For example, Figure 3-
(a) shows the decomposed Toffoli gate’s quantum circuit, where
each horizontal line represents a logical qubit, each block and
vertical line represents a single- and two-qubit gate, respectively.
Figure 3-(b) shows the Directed Acyclic Graph (DAG) of
the circuit. The depth of the circuit equals the length of the
DAG’s critical path. A quantum gate is logically executable
when it has no unexecuted predecessors in the DAG. A CNOT
operation cannot be executed unless the two logical qubits
involved are mapped physically adjacent. A SWAP operation
changes the qubit mapping by exchanging the states between
two qubits [18], [20]. Generally, it takes two steps for a
quantum program compiler to solve the mapping problem. (1)
Initial mapping generation. The compiler maps each program’s
logical qubits onto physical qubits. (2) Mapping transition. The
compiler meets all two-qubit constraints by inserting SWAPs to
the quantum circuit so that every two-qubit gate in the quantum
program can be executed physically.
E. Quantum cloud services

It takes a considerable cost to maintain a quantum computer.
The vendors would like to provide easy-to-use interfaces

2

Figure 4. A case for qubit mapping/allocation. The value on the edge represents
the CNOT error rate of the link. Edges highlighted in red indicate links with
high CNOT error rate. Physical qubits Q1, Q2, Q5, and Q6 are mapped.

for end-users to access quantum computers through cloud
services conveniently. Take IBM Q Experience [1] as an
example, the cloud service provides multiple back-ends, and
each of them connects a specific quantum computer. Quantum
programs can be compiled and executed on the target quantum
computer using qiskit framework [2]. However, due to the
scarcity of quantum computing resources and the growing need
for accessing quantum computers, contentions for accessing
quantum computers increases. Take the back-end, IBMQ Vigo,
as an example; we observe an average of more than 120
queued jobs per day. The throughput, utilization, and reliability
of quantum computers need to be improved to provide high-
quality services.

III. MOTIVATION
Quantum computers in the NISQ era are susceptible to errors,

and the state of a specific qubit can only keep in a short time
(e.g., 30-100 µs) [1]. In reality, the error rates are variational
across all of the qubits and links on NISQ computers; not all
of the qubits have similar reliability, and not all of the links
between qubits are with the same error rate. To map a specific
quantum program, previous noise-aware mapping techniques
for a single quantum program [21], [24], [30] usually employ
greedy or heuristic approaches to discover the mapping policies
that have the most reliable qubits and links. For example, in
Figure 4, Q1, Q2, Q5, and Q6 are mapped as they have higher
reliability, and the links between them have lower error rate.

With the rapid development of quantum computing, multi-
programming is introduced, which improves the qubits uti-
lization and the overall throughput of an expensive quantum
computer. For the quantum computing service providers, multi-
programming becomes increasingly useful as qubit counts
grow and the global quantum experimentation and quantum
computing demands increase. Multi-programming on quantum
computers is as essential as it on classical computers; however,
it brings new challenges for mapping qubits.

Although it is possible to combine multiple quantum
programs into one quantum circuit and then compile it
using the compilers dedicated to single quantum programs,
the following problems exist. (1) No fairness among co-
located quantum programs is guaranteed. Reliable resources
on a specific quantum chip are limited. It is not easy to
maintain fairness and the overall reliability for programs with
different characteristics. (2) The number of concurrent quantum
programs cannot be adjusted on-the-fly. For example, when a
significant fidelity reduction happens for multi-programming,
the parallel mode cannot be reverted to separate execution
mode; when the resources are sufficient, other programs cannot
be launched concurrently, causing resource under-utilization.

Figure 5. (a) Coupling map of IBMQ16, the calibration data is collected on
12.27.2019. Links with high error rate of CNOT are highlighted with red color.
Two quantum programs (i.e., P1 and P2) need to be mapped on the chip. P1

has 5 qubits and P2 has 4 qubits. (b) Allocation with FRP approach proposed
in [7]. (c) Better qubit mapping solutions for P1 and P2, providing higher
qubit utilization.

(3) New optimization opportunities for multi-programming are
missed. For example, the compilation overheads can be reduced
by the multi-programming mapping policies and inter-program
SWAPs. To sum up, it is necessary to design a new qubit
mapping strategy for Multi-programming Quantum Computers.

How to design an ideal scheme for mapping multiple
quantum programs on a specific chip simultaneously? – The
state-of-the-art multi-programming technique [7] supports to
co-locate two quantum programs. In practice, when more than
two quantum programs are running concurrently, it needs to
be enhanced to schedule them and provide a lower error rate
and high reliability. Some previous studies propose solutions
for mapping single quantum program [18], [30]. They mainly
rely on heuristic policies or greedy algorithms. Nevertheless,
mapping multiple programs is quite different from the scheme
that maps a single program. We summarize the challenges of
multi-programming and introduce our insights as follows.
A. Resource under-utilization – wasting qubits

Existing mapping policies face the challenge of resource
under-utilization. The available qubits are subject to be divided
into smaller scale segments. Some of them support mapping
a quantum program, but some cannot due to the high error
rate and weak links. Hence, some programs might have weak
qubits when mapping multiple quantum programs, leading
to unreliable results and increasing error rate for concurrent
quantum programs. The latest study [7] proposes how to map
multiple quantum programs onto a specific quantum chip.
Figure 5 shows an example on how to map quantum programs
P1 (5 qubits) and P2 (4 qubits) on IBMQ16. The unreliable
qubits and weak links are highlighted in Figure 5-(a). Figure 5-
(b) illustrates the results of using the mapping approach FRP
in [7]. For P1, FRP tries to have the most reliable qubits
and reliable links started from a reliable root that has enough
neighbors with high utility, which is defined as the ratio of
the number of links belong to a specific qubit and the sum of

3

Figure 6. A case for an inter-program SWAP.

the error rate of CNOT operations of the qubit. As a result,
started from Q4, FRP involve Q3 – Q5, Q9, and Q10 for initial
mapping of P1. However, after the allocation for P1, none of
the qubits in Q0 – Q2, Q11 – Q14 have enough neighbors
with high utility; FRP cannot find another reliable root for
mapping the other quantum program. Q6 – Q8 are not enough
to map a program that has four qubits. Thus, some reliable
qubits and links are wasted, e.g., Q0 and Q8. In fact, there
exists better solutions for mapping P1 and P2. Figure 5-(c)
illustrates a better solution, in which P1 and P2 are both
mapped on qubits with reliable links. Apparently, the existing
qubit mapping scheme incurs qubits under-utilization, therefore
wasting resources.
B. More SWAP operations – high SWAP overheads

SWAP exchanges the physical mapping between two logical
qubits. We can enable more than one SWAP operation to
move a logical qubit to an arbitrary physical qubit location.
In the cases where two qubits are not nearby, we can move
them together using SWAPs and then execute the two-qubit
gate in the circuit [7], [18]. When multiple quantum programs
are running concurrently, the number of SWAP operations
involved for a specific application can be higher than that in
the separate execution cases. The previous multi-programming
approach [7] compiles quantum programs one by one. If a
program occupies any qubits on the shortest SWAP path for all
co-located programs, the SWAP process has to suffer higher
overheads, i.e., involving more SWAP operations across more
qubits. More SWAP operations bring higher error rate [30];
therefore, the overall fidelity is negatively affected.

Figure 6 shows a case where two quantum programs are
mapped on a specific quantum chip. Figure 6-(a) shows
the circuits of two quantum programs (P1 and P2), and (b)
illustrates how they are mapped on a quantum chip with 6
physical qubits. According to the initial mapping, for P1, the g1
and g2 can be executed directly – without any SWAP operations
involved. However, the g3 cannot be executed directly unless
a SWAP operation between q2 and q3 is executed first. Same
thing happens for P2. A SWAP operation between q4 and q6
should be involved before g6 can be executed. To sum up, for
such a mapping case where two programs are involved, two
SWAPs are needed. Figure 6-(c) shows the SWAP operations.

By contrast, if the two programs could be compiled together,
and global information could be considered, the inter-program
SWAP operation could be enabled. Figure 6-(d) shows a new
policy that enables inter-program SWAPs. Illustrated in (d),
only one inter-program SWAP {q1, q5} is needed, and thus all

of the quantum gates can be executed without other overheads.
Each SWAP comprises three CNOT gates with relatively higher
error rates [7], [18], [30]. Therefore, more SWAPs would incur
unreliability; fewer SWAPs can benefit the overall performance
for a specific quantum computer and computing results.
C. Multi-programming workloads can be harmful

Quantum programs often exhibit differently on quantum
circuit depth, number of qubits, number of CNOTs, etc.
There are mutual interferences among programs for a multi-
programming workload containing more than one quantum
program, negatively affecting the workloads’ overall fidelity.
For instance, let’s suppose that we have a new workload consists
of P1 and P2 that will be co-located on a quantum chip. The
circuit depth of P1 and P2 are 40 and 170, respectively. The
co-location prolongs P1’s execution time, as the measurement
operations for qubits in P1 cannot be conducted until all gates in
P2 have been executed; otherwise, the measurement operations
would interfere with the state of other qubits and cause fidelity
degradation [7], [13]. As a result, severe coherence error and
fidelity degradation happen for P1 due to a long time passed [7],
[30]. In brief, a randomly generated workload may bring
unpredictable performance degradation. Therefore, an ideal
task scheduler for multi-programming workloads on quantum
chips is needed in cloud environments.
D. Related work

Recent studies towards mapping quantum programs onto
quantum chips mainly rely on heuristic search schemes.
IBM’s compilation framework [2] implements noisy adaptive
mapping [21] and Stochastic SWAP. The work in [32] generates
mapping transition by inserting SWAP layers into adjacent data
dependency layers. The study in [30] enhances the design in
[32] by introducing noise variation awareness. SABRE [18]
brings exponential speedup in the search complexity by
reducing the search space. QURE [3] finds reliable partitions
by searching isomorphic sub-graphs. These approaches focus
on mapping problems for only one quantum program. However,
new policies are expected to map multiple quantum programs
and ensure fairness and reliability at the same time. For multi-
programming, the effort in [7] proposes the FRP algorithm to
assign reliable regions for each quantum program. It enhances
SABRE [18] with noise awareness to generate the mapping
transition. This design can be further improved.

In this paper, we devise a new policy to generate a better
initial mapping for multi-programming quantum workloads and
develop a new SWAP approach, i.e., inter-program SWAP. Our
work makes better use of the qubit resources and significantly
reduces the compilation overheads.
E. Thinking about a New OS for the Quantum Computer

It is about the right time to have a new OS – QuOS –
for the quantum computer. Our work is among the first step
studies that discuss the prototype of OS for quantum computers.
The quantum computer has different design principles from
the classical Von Neumann architecture. The critical OS
components, e.g., ISA, scheduling, process management, etc.,
are not compatible with the quantum architecture. Therefore,

4

Figure 7. Qubit mapping by using CDAP algorithm in a nutshell.

OS’s design principles and implementation strategies for
quantum computers should be different from traditional ones.
QuCloud project, including QuOS, will continue to explore OS
and other run-time stack technologies for quantum computing.

IV. THE ART OF OUR DESIGN
A. The design of a new qubit mapping scheme

The initial mapping is critical for a specific quantum program.
An excellent initial mapping reduces the SWAP overheads and
can also make full use of the robust qubits and links on the
quantum chips. In terms of the concurrent quantum programs,
an excellent initial mapping reduces the SWAP cost during
mapping, reduces the interference between multiple concurrent
programs, and improves the overall fidelity.

For the quantum chip and multi-programming, there are
following observations. (1) The robust qubits and links on
a specific quantum chip are limited. (2) Some qubits on the
quantum chip have more connections to their surroundings,
e.g., as shown in Figure 2, Q1 has links to the three adjacent
physical qubits, while Q7 has a link to only one qubit. (3)
The qubits needed for a single program should be closely
allocated; the allocations for qubits belonging to different
quantum programs should avoid mutual interference, fairly
leveraging robust resources.

In this paper, we propose a new technology – Community
Detection Assistant Partitioning (CDAP) – to construct a
hierarchy tree consisted of qubits for searching the robust
qubits that are tightly connected for initial allocation. Figure 7
illustrates how CDAP works. CDAP creates a hierarchy tree
according to the coupling map and calibration data obtained
from IBMQ API [1]. In the hierarchy tree’s dendrogram, a leaf
node denotes a specific physical qubit; a circle node represents
the union of its sub-nodes. CDAP then iterates the hierarchy
tree from bottom to top to find available regions for initial
allocation. Finally, the quantum circuits are allocated by greedy
policy to corresponding regions. We show the details as below.

1) Hierarchy tree construction: The hierarchy tree is a
profile of a quantum chip, which helps to locate reliable qubit
resources on the quantum computer. Algorithm 1 constructs the
hierarchy tree based on FN community detection algorithm [23].
The algorithm clusters the physical qubits on a specific quantum
chip into communities. Qubits in a community have reliable
and close interconnections. By contrast, the links between
communities have relatively low reliability.

When the algorithm starts, each physical qubit is a commu-
nity and is a leaf node in the hierarchy tree. The algorithm
keeps merging two communities that can maximize the reward
function F until there is only one community containing all

Algorithm 1: Hierarchy tree construction.
Input: Quantum chip coupling graph w/ calibration data
Output: Hierarchy tree (HT)

1 Initialize HT by setting it empty;
2 Add a leaf node to HT for each qubit on chip;
3 while not all items in HT are merged for a larger community

do
4 Take two items A and B that are not merged and are with

the max value of F (A,B) in HT;
5 Create a New Node by setting A and B as the

New Node’s left subtree and right subtree, respectively;
6 Append New Node to HT;
7 end
8 Return HT.

qubits. Each community during the process corresponds to
a node in the hierarchy tree and is a candidate region for
allocating qubits. The reward function F is defined as the
benefit of merging two communities –

F = Qmerged −Qorigin + ωEV, (1)
in which Q is the modularity of a partition (i.e., Q =∑

i (eii − ai2) [23], in which eii is the fraction of within-
group edges in group i, and ai is the fraction of all edges
associated with vertices in group i). A higher value of Q
indicates a more proper partition. Qorigin and Qmerged denotes
the modularity of the original partition and the new partition
after merging the two communities, respectively. E denotes
the average reliability (i.e., one minus the error rate of the
operation) of CNOTs on the between-group edges of the two
communities, and V denotes the average reliability of readout
operations on the qubits of the two communities. The reward
function F makes CDAP to take both physical topology and
error rates into account when performing partitioning. ω is a
weight parameter. For a specific quantum chip, we can change
the value of ω for adjusting the weight of physical topology
and the error rate. If ω = 0, CDAP conducts partitioning
completely according to physical topology. Noise-awareness is
introduced as ω increases. If ω keeps increasing, the weight of
the error rate will exceed the weight of the physical topology,
resulting in the degradation of CDAP to a greedy algorithm
that is mainly based on error rate. The mapping results of
programs with fewer qubits are more sensitive to ω. Because
the variation of ω changes the error-rate awareness in CDAP,
obviously changing the qubit merging order. By contrast, the
program with more qubits is less sensitive. More details on
how the value of ω is selected are discussed in IV-A3.

The hierarchy tree has several features: (1) Every node in
the hierarchy tree is a candidate region for initial allocation. (2)
The physical qubits in a node (i.e., a community) are tightly
interconnected. (3) The qubits with a low readout error rate and
robust links are preferentially merged. Thus, the more robust
the qubit set is, the higher the node depth will be. Whether
the hierarchy tree is balanced or not doesn’t impact the qubit
mapping result, as the most reliable region can always be
selected for a specific program. The hierarchy tree helps to
locate the robust resources on quantum computers, providing
better initial mapping for quantum programs.

5

Figure 8. (a) Architecture of IBM Q London. The value in a node represents
the readout error rate (in %) of the qubit, and the value on a link means the
error rate (in %) of the CNOT operation. (b) The dendrogram generated by
Algorithm 1. The values in nodes are the index of the physical qubits.

Further, we explain why the hierarchy tree helps to select
the initial allocation with an example in Figure 8. (i) Q0 and
Q1 are firstly merged due to the link between them is with
the lowest error rate. (ii) Then, Q2 instead of Q3 is merged
into the community {0, 1}, though the link Q1-Q3 has a lower
CNOT error rate than Q1-Q2. This is because the algorithm
tends to merge more interconnected nodes into one community,
avoiding the waste of robust physical qubits. Likewise, Q3

and Q4 are merged. (iii) Finally, all qubits are merged as
the root of the hierarchy tree, as illustrated in Figure 8-(b).
The algorithm avoids wasting robust resources caused by the
topology-unaware greedy algorithm and supports more quantum
programs to be mapped on a specific quantum chip.

As the calibration data doesn’t change frequently (e.g., IBM
calibrates the devices once a day [1]), the hierarchy tree only
needs to be constructed once in each calibration cycle. It can
be saved for possible reuse within 24 hours, without incurring
more compilation overheads.

2) Partition and allocation: Algorithm 2 partitions the
qubits into multiple regions for concurrent quantum programs
according to the hierarchy tree. The algorithm prioritizes the
quantum programs with a higher value of the CNOT density,
which is defined as: (the number of CNOT instructions) / (the
number of qubits in the quantum program). For each quantum
program, the algorithm searches the hierarchy tree from bottom
to top to find available candidate set of physical qubits. Then,
the candidate with the lowest average error rate is assigned to
the program for initial allocation. Finally, all of the quantum
programs are allocated to regions using Greatest Weighted
Edge First strategy [21]. The policy maps two logical qubits
with the highest weighted edge (i.e., CNOTs are invoked most
frequently between them) to the most robust link on hardware.
It helps to generate an initial mapping with high reliability and
low compilation overheads.

3) Discussion: In Equation (1), E stands for the reliability
of links between qubits, and V denotes the reliability of readout
operations on qubits. Our design merges the reliable qubits with
robust links and the lower read-out error rate into a specific
community in each iteration. Unreliable qubits would be added
into the community at last. When performing qubits allocation,
CDAP searches the hierarchy tree from bottom to top to find
candidates for initial allocation. Unreliable qubits are less likely
to be selected, thereby improving the overall fidelity.

Using CDAP might lead to a case where the allocated qubits
for a quantum program exceed the qubits that the program

Algorithm 2: Qubit partitioning.
Input: Hierarchy tree, Quantum programs
Output: Partition

1 Sort quantum programs in descending order of CNOT density;
2 for each quantum program do
3 Initialize candidate nodes (C) as an empty set;
4 for each leaf node in the hierarchy tree do
5 Search a node that has enough number of on-chip

qubits for allocating the program from the leaf to its
parent nodes;

6 Add the node to C;
7 end
8 if C is empty then # The current qubit state cannot

meet the requirements
9 Fail and revert to separate execution;

10 end
11 Find the node in C w/ the highest average fidelity;
12 Add the node to Partition;
13 Remove qubits in the node from all other nodes in the

hierarchy tree;
14 if the node’s sibling node is isolated then # The sibling

node has no path to other nodes in the hierarchy tree
15 Remove qubits in the sibling node from its parent

nodes;
16 Remove the link from the sibling node to its parent;
17 end
18 end
19 Return Partition.

needs. For example, if a 4-qubit quantum program is mapped
on the quantum chip in Figure 8-(a), the only available region
(community) is the root of the hierarchy tree, i.e., {0,1,2,3,4},
leaving one qubit unmapped/unused, i.e., the redundant qubit.
To avoid waste, we label these redundant qubits and add them
to adjacent communities.

For a specific node in the hierarchy tree, we define the
term maximum redundant qubits, which refers to the max-
imum possible number of unused qubits when a quantum
program is allocated to the community. The number of
maximum redundant qubits of a node is: node.n qubits −
(1+max(node.left.n qubits, node.right.n qubits)). We observe
that the increase of ω in the reward function leads to the
degradation of the hierarchy tree, i.e., in each merge process
when constructing a hierarchy tree, only one leaf node
containing one qubit is added to the new community. The

Figure 9. The average number of redundant qubits in the hierarchy tree varies
with ω. A gray dot with darker color represents more cases are overlapping
in this result. The knee solution refers to the value of ω, which makes the
change of redundant qubits slow down with the increase of ω. We use the
knee solution because it can reduce the redundant qubits as much as possible,
without making the community partitioning depend too much on error rate.

6

Figure 10. (a) P1 and P2 are mapped on a quantum chip with 9 qubits. The
next gate to be solved is CNOT that involves q1 and q5. (b) X-SWAP scheme
takes shortcuts to satisfy the constraint of CNOT q1, q5.

number of maximum redundant qubits of the new community
is 0 in this case. Thus, the increase of ω leads to a reduction
in average redundant qubits. We collected the calibration data
of IBMQ16 for 21 days. The ω varies from 0 to 2.5 every
day, and the average number of the redundant qubits in the
hierarchy tree is recorded, as illustrated in Figure 9. We take
the knee solution, in which the value of ω is 0.95. In this
case, CDAP takes both physical topology and the error rate
into account, and the average redundant quantum number of
the hierarchy tree is 0.29. The same experiment is conducted
on IBMQ50, and ω is 0.40. Briefly, the number of redundant
(unused) qubits is quite low in reality. Moreover, CDAP can
also handle mapping cases where just a single program is
involved. CDAP maps the program to the most reliable qubit
region.
B. The design of inter-program SWAP

Multi-programming brings new challenges for mapping
transition. In this paper, we design the X-SWAP, which includes
both inter- and intra-program SWAP operations. It provides
the best SWAP solution by considering the SWAP possibilities
across all of the qubits. In practice, the inter-program SWAP
can be enabled when two quantum programs are close to each
other. The cost of inter-program SWAPs can be less than the
cost in the cases where only intra-program SWAPs are used.
The below section shows the details.

1) The advantages of inter-program SWAP: In our study,
we find there are two main advantages. (1) An inter-program
SWAP can replace two or more intra-program SWAPs. As
demonstrated in Figure 6-(c) and (d), the intra-program SWAPs,
i.e., {q2, q3}, {q4, q6}, can be replaced by one inter-program
SWAP across q1 and q5. Obviously, using the inter-program
SWAP achieves the same goal but has lower overheads. (2)
Inter-program SWAPs take shortcuts. For instance, Figure 10-
(a) shows two quantum programs are co-located (mapped)
on a quantum chip with nine qubits. q1 and q5 are not
mapped physically adjacent; SWAPs are required to satisfy
their constraint to make CNOT q1, q5 executable. As illustrated
in Figure 10-(b), an inter-program SWAP i.e., {q1, q9}, takes
only one step (swap operation) to move q1 and q5 adjacent.
By contrast, to achieve the same goal, previous intra-program
scheme has to introduce three SWAPs, i.e., {q1, q2}, {q1,
q3}, {q1, q4}. Briefly, enabling inter-program SWAPs could
result in fewer SWAPs in the cases where multiple quantum
programs are mapped as neighbors on a specific quantum chip,
therefore reducing the SWAP overheads and benefiting the
overall fidelity.

Figure 11. Critical gates (CG). Figure 12. Example of the SWAP candidates.

2) The design of X-SWAP: Instead of generating a schedule
for each quantum program separately and then merge them,
which is done by the previous work, we are the first to design
an approach for generating the global scheduling solution for
all of the programs simultaneously. In our work, the SWAP-
based heuristic search scheme in previous work [18] is used
as the baseline. The design details are shown as follows.
Heuristic search space. To show our design, we illustrate a
circuit for a quantum program P in Figure 11. The CNOT
gates of the circuit can be divided into 4 layers (i.e., l1-l4). As
1-qubit gates can be performed directly without SWAPs, only
CNOTs are considered here. Gates in a layer can be executed
in parallel. l1 is the Front layer (denoted as F) of P , which
denotes the set of all gates without unexecuted predecessors
in the Directed Acyclic Graph (DAG) of P . The DAG shows
P ’s data dependency. Critical Gates (CG) denotes the set of
CNOT gates in F that have successors on the second layer
(l2). For example, in F , g1 has a successor g3 on l2, but g2
has no successors. Thus, g1 is a critical gate; g2 is not. If the
critical gate g1 is executed and removed from the DAG, the
data dependency of g3 is resolved and the front layer F will
be updated. By contrast, handling g2 firstly doesn’t help to
update F .

We reserve the program context (i.e., qubit mapping, DAG,
F , CG, etc.) for each quantum program in the context list. For
each program Pi, we remove hardware-compliant gates that
can be executed directly in Fi from DAGi. When there are
no hardware-compliant gates, SWAPs are needed to make
hardware-incompliant gates executable. Among all of the
hardware-incompliant gates, the data dependency of critical
gates need to be handled firstly for the purpose of updating the
Front Layer and reducing the post-compilation circuit depth.
Thus, we only search the SWAPs associated with qubits in
critical CNOT gates. To help understand, Figure 12 shows other
examples, in which g1 and g3 are critical gates illustrated in
DAGs. The qubits involved in g1 and g3 are not mapped as the
close neighbors. All SWAPs associated with the critical gates
are SWAP candidates. They are highlighted on the coupling
map of the quantum chip. The best SWAP among candidates is
selected according to the heuristic cost function (details refer
to the following). The mapping is updated as the SWAP is
inserted into the circuit. Some hardware-incompliant CNOTs
become executable when their constraints are eliminated by
the SWAPs. The procedure repeats until the constraints of all
CNOTs in the DAG are satisfied.
Design of the heuristic cost function. The heuristic cost
function helps to get the best SWAP from all SWAP candidates
(including inter/intra-program SWAPs). We show its core idea.

7

The concept locality for mapping a quantum program is
critical. It indicates that the mapping policy should keep qubits
belonging to a specific program close to each other. Otherwise,
high SWAP overheads will occur between two qubits mapped
far away from each other when required for a CNOT operation.
Nearest Neighbor Cost (NNC) is the length of the shortest path
between two logical qubits mapped on a quantum chip. NNC-
based heuristic function is used in SABRE [18] to choose the
best SWAP among the SWAP candidates. We also use the NNC-
based heuristic function H as a component in our approach. H
represents the sum of the cost in the front layers and the cost
in the extended sets [18]. Each set’s cost is calculated as the
averaged NNC of all CNOT gates in the set.

We prioritize inter-program SWAPs on the shortest SWAP
path. Given the coupling map of a quantum chip and the
qubit allocations, we define the term distance matrix D, in
which each cell denotes the length of the shortest path between
two physical qubits on the quantum chip. For each program
Pi, we define D

′

i as the shortest path matrix for qubits that
have not been occupied by other programs. i.e., unmapped
physical qubits and the physical qubits on which Pi is mapped.
In essence, D represents the shortest path matrix to perform
mapping transition for concurrent quantum programs with inter-
program SWAPs enabled; D

′

i represents the shortest path matrix
to perform mapping transition for Pi. For a two-qubit gate g,
we denote the two logical qubits involved in g as g.q1 and
g.q2. We define the physical qubit on which a logical qubit
q is mapped as σ(q). The shortest path between two qubits
involved in a two-qubit gate minus 1 is the minimum number
of SWAPs required to satisfy their constraint.

In our design, if D
′

i[σ(g.q1)][σ(g.q2)] is greater than
D[σ(g.q1)][σ(g.q2)] for a two-qubit gate g in a specific
quantum program Pi, it means that inter-program SWAPs out-
performs intra-program SWAPs when satisfying the constraint
of g. In such cases, the X-SWAP scheme should enable inter-
program SWAPs to reduce the quantum programs’ mapping
transition cost. For example, in Figure 10-(b), as it takes either
1 inter-program SWAP or 3 intra-program SWAPs to satisfy
the constraint of CNOT q1, q5, it delivers D[σ(q1)][σ(q5)] = 2
and D

′

1[σ(q1)][σ(q5)] = 4. In terms of inserting SWAPs to
satisfy g’s constraint, we define the number of SWAPs saved
by X-SWAP scheme as:

gain(g) = D[σ(g.q1)][σ(g.q2)]−D
′

i[σ(g.q1)][σ(g.q2)], (2)
and, we define the heuristic cost function as:

score(SWAP) =H(SWAP)+∑
Fi∈F

1

|Fi|
∑
g∈Fi

gain(g)I(SWAP, g). (3)

As the sizes of different Front Layers vary, the gain is
normalized to their sizes accordingly. The shortest SWAP path
for satisfying g’s constraint involves several qubits. When
both logical qubits involved in the SWAP is on the shortest
SWAP path, I(SWAP, g) = 1. Otherwise, I(SWAP, g) = 0.
This indicates only the SWAPs on the shortest SWAP path are
prioritized. The SWAP with the minimum value of score is

Algorithm 3: X-SWAP mechanism.
Input: Quantum chip coupling graph, Quantum programs,

Initial mapping
Output: Final Schedule (FS)

1 Generate a DAG for each program;
2 Generate a Front Layer for each DAG;
3 while not all gates’ constraints are satisfied do
4 if hardware-compliant gates exist then
5 Append hardware-compliant gates to FS;
6 Remove hardware-compliant gates from the DAG and

update the Front Layer;
7 else
8 for each Front Layer do
9 Append CNOTs in the Front Layer that have

subsequent CNOTs on the second layer to
Critical Gates;

10 end
11 Add SWAPs associated with the qubits in Critical

Gates to SWAP candidates;
12 Find a SWAP from SWAP candidates with the

minimum value of score(SWAP);
13 Append the SWAP to FS and update mapping;
14 end
15 end
16 Return FS.

the best among the candidates. Algorithm 3 shows the overall
logic of X-SWAP.
C. The design of the compilation task scheduler

Although there are some mapping mechanisms for concurrent
quantum programs, selecting appropriate quantum programs
to form a combination for the multi-programming workload
is still a challenging job. An ineffective approach often brings
problems. (1) Qubits are often under-utilized. (2) The program
combinations formed by randomly selected programs may
lead to a significant reduction in fidelity. (3) A complicated
verification mechanism must be introduced to ensure fidelity,
bringing additional system modification overheads. To this
end, we design a scheduler that selects appropriate concurrent
quantum programs for multi-programming.

Our design selects optimal quantum program combinations,
maximizing quantum chips’ fidelity and resource utilization.
For each task in the scheduling queue, the scheduler checks
whether other quantum programs in the queue can be co-
located on the quantum chip with the current task without
incurring unacceptable fidelity reduction. If so, they are mapped
simultaneously for multi-programming. Otherwise, the task will
be executed separately.

The Estimated Probability of a Successful Trial (EPST) is
proposed to estimate the fidelity of the execution of a quantum
program on a specific quantum chip. Separate EPST is the
maximum EPST that a program can achieve. To obtain the
separate EPST, Algorithm 2 is called for every specific quantum
program to allocate a set of physical qubits for it. Co-located
EPST represents the EPST when multiple quantum programs
are co-located on a quantum chip. Algorithm 2 is involved to
generate a partition for all of the programs. The EPST of a
quantum program on the set of allocated physical qubits is

8

Algorithm 4: Compilation task scheduling.
Input: List of incoming jobs (IJ), Hierarchy tree

1 while not all jobs in IJ are scheduled do
2 Initialize cur job set as a list having the first item in IJ;
3 Initialize idx as 1;
4 while idx<IJ’s length and idx<N and cur job set’s

length<MAX COLOCATE NUM do
5 Append IJ[idx] to cur job set;
6 for each job in cur job set do
7 Calculate job’s sep EPST;
8 Calculate job’s co EPST;
9 Calculate job’s EPST violation as 1-(co EPST/

sep EPST);
10 if EPST violation > ε then
11 Remove IJ[idx] from cur job set;
12 Break;
13 end
14 end
15 Set idx as idx+1;
16 end
17 Algorithm 3 is called to compile programs in cur job set;
18 cur job set is submitted to execute;
19 Remove all programs in cur job set from IJ.
20 end

defined as bellow:
EPST = r

|CNOTS|
2q r

|1q gates|
1q r|qubits|

ro , (4)
in which r2q, r1q and rro denotes the average reliability
of CNOTs, the average reliability of 1-qubit gates, and the
average reliability of readout operations on the allocated
physical qubits, respectively. |CNOTS|, |1q gates| and |qubits|
denotes the number of CNOT gates, the number of single-
qubit gates, and the number of qubits of the quantum program,
respectively. For example, when a program containing 3 qubits
with 2 CNOTs and 1 single-qubit gate is allocated to a region
with r2q = 0.9, r1q = 0.95 and rro = 0.85, it delivers
EPST = 0.92 ∗ 0.95 ∗ 0.853. A higher EPST indicates the
quantum program is mapped to a region with more robust
resources and also indicates a higher PST may be obtained
during the real execution in practice.

For a specific quantum program combination, our approach
generates the EPST violation according to the separate EPST
and the co-located EPST. If EPST violation is less than the
threshold ε, these quantum programs can be co-located on
the chip. The scheduler supports to co-locate more than two
programs on a quantum computer. To ensure our approach’s
efficiency and the scheduling’s fairness, we only search the
first N tasks (10 by default in practice) in the queue. More
details are in Algorithm 4.

Figure 13. Architecture of IBMQ50.

Table I NISQ BENCHMARKS.

Type Benchmarks
tiny-sized bv n3, bv n4, peres 3, toffoli 3, fredkin 3

small-sized 3 17 13, decod24-v2 43, 4mod5-v1 22,
mod5mils 65, alu-v0 27

large-sized

aj-e11 165, 4gt4-v0 72, alu-bdd 288, ex2 227,
ham7 104, bv n10, ising model 10, qft 10,
sys6-v0 111, rd53 311, qft 16, alu-v2 31,
C17 204, cnt3-5 180, sf 276, sym9 146

V. EVALUATION
A. Methodology

1) Metrics: The following metrics are used for evaluations.
Probability of a Successful Trial (PST). PST is used to
evaluate the fidelity of the quantum program execution [7],
[29], [30]. PST is defined as the fraction of trails that produce
a correct result. To get PST, we compile and run each workload
on the target quantum chip for 8024 trials.
Number of post-compilation gates. We use the number of
post-compilation CNOT gates to evaluate the compiler’s ability
to reduce the compilation overheads when compiling multiple
quantum programs.
Post-compilation circuit depth. The compiled quantum pro-
gram’s circuit depth is used to evaluate the compiler’s capability
for reducing the coherence error.
Trial Reduction Factor (TRF). TRF is used to evaluate the
improvement of the throughput brought by multi-programming
policies [7]. TRF is defined as the ratio of needed trails when
programs are executed separately to the trails needed when
multi-programming is enabled.

2) Quantum chips: We evaluate our work on IBMQ16 [1]
and IBMQ50 [16]. Their architectures are illustrated in Figure 2
and Figure 13, respectively. IBMQ16 is publicly available;
IBMQ50 is not. We simulate IBMQ50 for evaluations. The
simulated chip consists of: (1) topology information, and (2)
calibration data. The topology of the IBMQ50 is provided by
IBM. We generate the value of each attribute in the calibration
data within the range of its maximum and minimum value on
IBMQ16 using a uniform random model.

3) Benchmarks: We employ the benchmarks (in Table I)
used in previous studies – SABRE [18], QSAM-Bench [6],
RevLib [31] and examples in [32]. The tiny/small-sized
programs have around five qubits and tens of CNOT gates;
The large-sized ones have about ten qubits and hundreds of
CNOT gates. For today’s quantum chips (e.g., IBMQ16/50),
using these programs can be sufficient to validate our work.

4) Baseline: Separate execution. It compiles and executes
each program in a workload separately using the algorithm
with the highest optimization level in qiskit [2]. They are
the most reliable cases without interference caused by multi-
programming.
Multi-programming baseline. It uses the policy proposed
in [7], which generates initial mapping for concurrent quantum
programs with FRP strategy and generates mapping transition
with the enhanced noise-aware SABRE strategy.
SABRE. Multiple programs are merged into one quantum
circuit and compiled using SABRE [18]. SABRE is a noise-

9

Table II PST COMPARISON BETWEEN MULTIPLE STRATEGIES ON IBMQ16.

Workloads Separate SABRE Baseline CDAP+X-SWAP CDAP-only X-SWAP-only
W1 W2 PST1 PST2 avg PST1 PST2 avg PST1 PST2 avg PST1 PST2 avg PST1 PST2 avg PST1 PST2 avg

bv n3 bv n3 83.4 84.0 83.7 50.8 75.4 63.1 57.5 61.4 59.5 69.7 66.2 68.0 68.7 67.1 67.9 19.3 54.9 37.1
bv n3 bv n4 83.4 63.6 73.5 52.6 34.5 43.5 35.9 25.0 30.4 52.5 17.7 35.1 27.2 12.8 20.0 37.4 53.7 45.5
bv n3 peres 3 83.9 81.2 82.5 56.3 51.2 53.8 49.3 61.0 55.2 63.9 71.1 67.5 65.1 70.8 67.9 67.9 76.8 72.4
bv n3 toffoli 3 83.1 82.0 82.5 59.0 49.5 54.3 65.7 41.9 53.8 65.3 81.7 73.5 63.8 70.5 67.1 48.5 76.5 62.5
bv n3 fredkin 3 83.2 46.2 64.7 40.9 56.1 48.5 69.7 39.1 54.4 66.1 81.9 74.0 64.9 82.1 73.5 46.4 64.1 55.2

avg 77.4 52.6 50.7 63.6 59.3 54.5
3 17 13 3 17 13 43.1 44.6 43.8 12.9 10.8 11.9 14.0 11.6 12.8 33.3 11.3 22.3 7.0 22.2 14.6 23.0 15.6 19.3
3 17 13 4mod5-v1 22 45.0 28.3 36.7 10.4 18.7 14.5 12.0 21.3 16.7 33.5 17.3 25.4 13.7 29.6 21.7 16.8 25.4 21.1
3 17 13 mod5mils 65 22.4 29.2 25.8 9.3 3.6 6.5 18.5 19.1 18.8 32.0 16.9 24.5 13.7 7.6 10.7 13.2 16.7 15.0
3 17 13 alu-v0 27 44.0 14.1 29.0 9.0 7.3 8.1 14.0 7.4 10.7 18.3 15.2 16.8 20.9 21.9 21.4 9.3 6.3 7.8
3 17 13 decod24-v2 43 43.6 6.2 24.9 18.2 7.8 13.0 11.5 9.3 10.4 14.7 11.2 13.0 27.2 6.6 16.9 7.6 19.1 13.4

avg 32.1 10.8 13.9 20.4 17.0 15.3

Table III COMPILATION OVERHEADS COMPARISON OF 4-PROGRAM WORKLOADS ON IBMQ50.

Mixes Benchmarks in the workload SABRE Baseline CDAP+X-SWAP CDAP-only X-SWAP-only
CNOTs depth CNOTs depth CNOTs depth CNOTs depth CNOTs depth

Mix 1 aj-e11 165, alu-v2 31, 4gt4-v0 72, sf 276 1386 768 1303 847 1167 586 1141 530 1177 629
Mix 2 alu-bdd 288, ex2 227, ham7 104, C17 204 1222 596 1266 717 1236 671 1225 581 1242 717
Mix 3 bv n10, ising model 10, qft 10, sys6-v0 111 387 189 382 178 351 160 419 236 341 224
Mix 4 aj-e11 165, alu-v2 31, ising model 10, cnt3-5 180 979 450 1008 437 953 480 1005 450 950 496
Mix 5 4gt4-v0 72, sf 276, sym9 146, rd53 311 1365 672 1429 759 1255 536 1237 497 1089 450
Mix 6 alu-bdd 288, ex2 227, qft 10, sys6-v0 111 871 711 862 655 780 563 862 578 809 579
Mix 7 ham7 104, C17 204, bv n10, ising model 10 713 370 963 496 668 413 723 423 677 399
Mix 8 aj-e11 165, 4gt4-v0 72, rd53 311, cnt3-5 180 996 448 1052 537 916 441 894 368 940 390
Mix 9 alu-v2 31, sf 276, sym9 146, qft 16 1481 738 1499 769 1478 718 1545 779 1325 482

Mix 10 alu-bdd 288, ham7 104, ising model 10, sys6-v0 111 659 392 662 315 622 248 656 306 617 325
Mix 11 ex2 227, C17 204, bv n10, qft 10 955 537 1049 630 900 569 964 531 985 599
Mix 12 aj-e11 165, sf 276, C17 204, sys6-v0 111 1438 834 1337 828 984 506 1267 773 1063 467

unaware approach for reducing compilation overheads.
We show the breakdown of our approach, i.e., CDAP-only

and X-SWAP-only, separately. We also show the effectiveness
of our approach that enables both CDAP and X-SWAP at the
same time. CDAP-only employs the same mapping transition
approach with SABRE. Moreover, the X-SWAP-only strategy
employs the identical initial mapping strategy as SABRE.
B. Evaluation results

1) Evaluations on fidelity: We use tiny-sized and small-
sized benchmarks for fidelity evaluation. We show PST of
two-program workloads executed on IBMQ16 in Table II.
The experiments are conducted within a calibration cycle of
IBMQ16, indicating the calibration data are the same. The
combination of two programs can double the throughput of
the quantum computer. However, multi-programming may
reduce reliability due to resource conflicts and cross-talk
errors. In most cases, the PST of multi-programming quantum
programs is lower than that in separate execution cases. Our
approach incurs less fidelity reduction. The average PST of
our approach (CDAP+X-SWAP), separate execution, SABRE,
and multi-programming baseline for tiny-sized workloads are
63.6%, 77.4%, 52.6% and 50.7%, respectively. For small-
sized workloads, they are 20.4%, 32.1%, 10.8% and 13.9%,
respectively. The fidelity of our approach outperforms SABRE
and the multi-programming baseline by 10.3% and 9.7%, on
average, respectively. It indicates that our approach provides a
more reliable result and incurs less fidelity reduction.

The benefit of our approach mainly comes from CDAP
strategy. CDAP improves the fidelity by providing a better
initial mapping, which makes the fidelity in multi-programming

close to or even exceed that in separate execution cases. For
example, as shown in Table II, in the benchmark combination
of bv n3 and fredkin 3, CDAP-only improves the fidelity
significantly by 19.1% over the multi-programming baseline by
providing a better initial mapping. The advantages of CDAP
over multi-programming baseline originate from two aspects.
(1) Gates performed on a reliable region have lower error rate.
(2) A better initial allocation reduces mapping transition SWAP
cost. On average, CDAP-only strategy reduces the adverse
impact of multi-programming and outperforms baseline by
5.9% in fidelity.

X-SWAP-only strategy doesn’t exhibit significant advantages
on fidelity improvement due to following reasons. (1) Few
SWAPs are needed to compile small-sized quantum programs,
so X-SWAP scheme can hardly save SWAPs in these cases.
(2) The initial mapping has a major impact on reliability for
small-sized quantum programs on a quantum chip with simple
architecture like IBMQ16. (3) The allocation of the quantum
programs may not be adjacent, and inter-program SWAPs are
unlikely to be performed. But, X-SWAP performs better on
the chip with more qubits.

2) Evaluations on compilation overheads: X-SWAP per-
forms better in an enlarged SWAP search space when larger-
sized programs are co-located on a quantum chip with more
qubits. We evaluate compilation overheads of 4-program
workloads on IBMQ50 by comparing the number of post-
compilation gates and circuit depth. The workloads are ran-
domly selected aiming to cover as many orthogonal program
combinations as possible. For each workload and each policy,
we report the best result out of 5 attempts (similar with [18]).

10

The experimental results are shown in Table III.
For SABRE [18], using the reverse traversal technique and

the heuristic search scheme, it tries to minimize the number of
SWAPs inserted for compiling quantum programs. However,
SABRE cannot achieve the optimal solution when compiling
multi-programming workloads, as the locality is not involved.
By contrast, multi-programming baseline takes the locality
into account when partitioning qubits, but resource conflicts
are introduced between co-located quantum programs, leading
to redundant SWAPs involved. Therefore, the experimental
results show that the number of post-compilation CNOT gates
compiled with multi-programming baseline is 4.0% higher than
that compiled with SABRE, on average. The circuit depth of
the baseline exceeds SABRE by 6.8%, on average.

CDAP-only outperforms SABRE by 2.7% in the number of
post-compilation CNOT gates and 6.8% in circuit depth, on
average. The reduction of compilation overheads origins from
a closely inter-connected initial mapping. The reduction is not
that significant, and in some cases, e.g., Mix 9, CDAP-only
shows higher compilation overheads than other techniques.
The underlying reason is that CDAP mainly aims at obtaining
the initial mapping with the highest fidelity and improving
resource utilization, reducing the compilation overheads (i.e.,
compiling quantum programs with the minimum number of
SWAPs) is not CDAP’s primary task. X-SWAP-only employs
the identical initial mapping strategy as SABRE. By enabling
inter-program SWAPs and prioritizing critical gates, the X-
SWAP-only effectively reduces the number of post-compilation
gates by 8.8%. It also reduces the post-compilation circuit depth
by 9.2%, on average. The reasons are multi-folds. (1) X-SWAP
leverages the inter-program SWAPs, taking shortcuts to save
compilation overheads. (2) By searching the SWAPs that are
associated with critical gates, X-SWAP provides more efficient
SWAPs to reduce the compilation overheads and circuit depth.

In our design, CDAP generates a reliable and closely
inter-connected initial mapping; X-SWAP helps to reduce the
compilation overheads. CDAP and X-SWAP work together
to benefit the performance – reducing the number of post-
compilation gates by 11.6% compared with baseline, and 8.6%
compared with SABRE. The circuit depth is reduced by 16.0%
and 10.3% compared with baseline and SABRE, respectively.
More results can be found in Table III.

Moreover, our work exhibits scalability. It reduces the
compilation overheads for 4-program workloads on IBMQ50.
It also can be used on a larger quantum chip with more qubits,
because – (1) The community detection approach in CDAP has
been proved to be effective for large networks. (2) X-SWAP
reduces compilation overheads when quantum programs are
mapped adjacently. They both work well regardless of the scale
of a specific quantum chip.

3) Evaluations on the task scheduler (i.e., QuCloud sched-
uler): We construct a task queue that includes the tiny-sized
and small-sized quantum programs in Table I. We use the
task scheduler to schedule the workloads with the estimated
fidelity (EPST) violation threshold ε ranging from 0.05 to
0.2. The average Probability of a Successful Trial (PST) and

Figure 14. Performance of the task scheduler. PST and TRF stand for fidelity
and throughput, respectively. Higher is better for both. The increase of ε leads
to higher throughput, but may cause fidelity reduction.

Trial Reduction Factor (TRF) of the workloads are shown in
Figure 14. Figure 14 also shows the performance in separate
execution cases and the randomly selected two-programmed
combination cases.

Separate execution can support the best average PST of
35.9% with a TRF of 1 (no parallelism). Randomly selected
two-programmed combination cases have the lowest average
PST of 25.1%, but the TRF is 2 (i.e., 2 programs in parallel
all the time). By contrast, our scheduler performs best when
ε is 0.15 (i.e., only multi-programming cases leading to less
than 15% estimated fidelity reduction could be scheduled).
In this case, the average fidelity of the workloads is 30.1%,
outperforming the randomly selected workloads by 5.0%. The
TRF is 1.429, indicating the throughput is improved by 42.9%
compared to separate execution cases. The experimental results
show that our QuCloud scheduler can provide better solutions
to balance the quantum computers’ throughput and fidelity.

VI. CONCLUSION
Quantum computers attract more and more attention. With

the trend of putting everything on the cloud, quantum computers
face the problems of resource under-utilization, lower fidelity,
higher error rates, etc. Our work presents a new qubit mapping
policy for multi-programming cases, improving the fidelity
and resource utilization when multiple quantum programs are
running on a specific quantum chip. Our approach outperforms
the state-of-the-art multi-programming strategy by improving
the fidelity and reducing the SWAP overheads. As multi-
programming is gaining importance in the cloud, we hope
our efforts could help future researchers in the related field.

ACKNOWLEDGEMENT
We thank the reviewers for their valuable comments. We

thank Prof. Mingsheng Ying, Prof. Wei Zhao, and Academician
Guojie Li for their invaluable suggestions and attention. This
work is supported by NSFC under grant No. 62072432,
61502452. L. Liu thanks Yun He. X. Dou is a student member
in Sys-Inventor Lab led by L. Liu.

REFERENCES
[1] “IBM Quantum Experience,” https://quantum-computing.ibm.com/, Ac-

cessed: April 2, 2020.
[2] H. Abraham, AduOffei, I. Y. Akhalwaya, G. Aleksandrowicz, T. Alexan-

der, E. Arbel, A. Asfaw, C. Azaustre, AzizNgoueya, P. Barkoutsos,
G. Barron, L. Bello, Y. Ben-Haim, D. Bevenius, L. S. Bishop, S. Bolos,
S. Bosch, S. Bravyi, D. Bucher, A. Burov, F. Cabrera, P. Calpin,
L. Capelluto, J. Carballo, G. Carrascal, A. Chen, C.-F. Chen, R. Chen,
J. M. Chow, C. Claus, C. Clauss, R. Cocking, A. J. Cross, A. W. Cross,
S. Cross, J. Cruz-Benito, C. Culver, A. D. Córcoles-Gonzales, S. Dague,
T. E. Dandachi, M. Dartiailh, DavideFrr, A. R. Davila, A. Dekusar,

11

https://quantum-computing.ibm.com/

D. Ding, J. Doi, E. Drechsler, Drew, E. Dumitrescu, K. Dumon, I. Duran,
K. EL-Safty, E. Eastman, P. Eendebak, D. Egger, M. Everitt, P. M.
Fernández, A. H. Ferrera, FranckChevallier, A. Frisch, A. Fuhrer,
M. GEORGE, J. Gacon, B. G. Gago, C. Gambella, J. M. Gambetta,
A. Gammanpila, L. Garcia, S. Garion, A. Gilliam, J. Gomez-Mosquera,
S. de la Puente González, J. Gorzinski, I. Gould, D. Greenberg, D. Grinko,
W. Guan, J. A. Gunnels, M. Haglund, I. Haide, I. Hamamura, O. C.
Hamido, V. Havlicek, J. Hellmers, Ł. Herok, S. Hillmich, H. Horii,
C. Howington, S. Hu, W. Hu, H. Imai, T. Imamichi, K. Ishizaki, R. Iten,
T. Itoko, JamesSeaward, A. Javadi, A. Javadi-Abhari, Jessica, M. Jivrajani,
K. Johns, Jonathan-Shoemaker, T. Kachmann, N. Kanazawa, Kang-
Bae, A. Karazeev, P. Kassebaum, S. King, Knabberjoe, Y. Kobayashi,
A. Kovyrshin, R. Krishnakumar, V. Krishnan, K. Krsulich, G. Kus,
R. LaRose, E. Lacal, R. Lambert, J. Latone, S. Lawrence, G. Li, D. Liu,
P. Liu, Y. Maeng, A. Malyshev, J. Manela, J. Marecek, M. Marques,
D. Maslov, D. Mathews, A. Matsuo, D. T. McClure, C. McGarry,
D. McKay, D. McPherson, S. Meesala, T. Metcalfe, M. Mevissen,
A. Mezzacapo, R. Midha, Z. Minev, A. Mitchell, N. Moll, M. D. Mooring,
R. Morales, N. Moran, MrF, P. Murali, J. Müggenburg, D. Nadlinger,
K. Nakanishi, G. Nannicini, P. Nation, E. Navarro, Y. Naveh, S. W. Neagle,
P. Neuweiler, P. Niroula, H. Norlen, L. J. O’Riordan, O. Ogunbayo,
P. Ollitrault, S. Oud, D. Padilha, H. Paik, S. Perriello, A. Phan, F. Piro,
M. Pistoia, C. Piveteau, A. Pozas-iKerstjens, V. Prutyanov, D. Puzzuoli,
J. Pérez, Quintiii, N. Ramagiri, A. Rao, R. Raymond, R. M.-C. Redondo,
M. Reuter, J. Rice, D. M. Rodrı́guez, RohithKarur, M. Rossmannek,
M. Ryu, T. SAPV, SamFerracin, M. Sandberg, H. Sargsyan, N. Sathaye,
B. Schmitt, C. Schnabel, Z. Schoenfeld, T. L. Scholten, E. Schoute,
J. Schwarm, I. F. Sertage, K. Setia, N. Shammah, Y. Shi, A. Silva,
A. Simonetto, N. Singstock, Y. Siraichi, I. Sitdikov, S. Sivarajah, M. B.
Sletfjerding, J. A. Smolin, M. Soeken, I. O. Sokolov, SooluThomas,
Starfish, D. Steenken, M. Stypulkoski, S. Sun, K. J. Sung, H. Takahashi,
I. Tavernelli, C. Taylor, P. Taylour, S. Thomas, M. Tillet, M. Tod,
M. Tomasik, E. de la Torre, K. Trabing, M. Treinish, TrishaPe, W. Turner,
Y. Vaknin, C. R. Valcarce, F. Varchon, A. C. Vazquez, V. Villar, D. Vogt-
Lee, C. Vuillot, J. Weaver, R. Wieczorek, J. A. Wildstrom, E. Winston,
J. J. Woehr, S. Woerner, R. Woo, C. J. Wood, R. Wood, S. Wood,
S. Wood, J. Wootton, D. Yeralin, D. Yonge-Mallo, R. Young, J. Yu,
C. Zachow, L. Zdanski, H. Zhang, C. Zoufal, Zoufalc, a matsuo, adekusar
drl, bcamorrison, brandhsn, chlorophyll zz, dekel.meirom, dekool, dime10,
drholmie, dtrenev, elfrocampeador, faisaldebouni, fanizzamarco, gadial,
gruu, jagunther, jliu45, kanejess, klinvill, kurarrr, lerongil, ma5x, merav
aharoni, michelle4654, ordmoj, rmoyard, saswati qiskit, sethmerkel,
strickroman, sumitpuri, tigerjack, toural, vvilpas, welien, willhbang,
yang.luh, yotamvakninibm, and M. Čepulkovskis, “Qiskit: An open-
source framework for quantum computing,” 2019.

[3] A. Ash-Saki, M. Alam, and S. Ghosh, “QURE: Qubit re-allocation in
noisy intermediate-scale quantum computers,” in Proceedings of the 56th
IEEE/ACM Design Automation Conference (DAC), 2019.

[4] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus,
P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates
for quantum computation,” in Physical review A, 1995.

[5] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd,
“Quantum machine learning,” in Nature, 2017.

[6] A. W. Cross, L. S. Bishop, J. A. Smolin, and J. M. Gambetta, “Open
quantum assembly language,” in arXiv 1707.03429.

[7] P. Das, S. S. Tannu, P. J. Nair, and M. Qureshi, “A Case for Multi-
Programming Quantum Computers,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture (Micro), 2019.

[8] S. Debnath, N. M. Linke, C. Figgatt, K. A. Landsman, K. Wright, and
C. Monroe, “Demonstration of a small programmable quantum computer
with atomic qubits,” in Nature, 2016.

[9] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Surface
codes: Towards practical large-scale quantum computation,” in Physical
Review A, 2012.

[10] M. Giles, “IBM’s new 53-qubit quantum computer is the most powerful
machine you can use,” https://www.technologyreview.com/f/614346/ibms-
new-53-qubit-quantum-computer-is-the-most-powerful-machine-you-
can-use/, Accessed: April 2, 2020.

[11] L. K. Grover, “A fast quantum mechanical algorithm for database search,”
in Proceedings of the 28th annual ACM symposium on Theory of
computing (STOC), 1996.

[12] J. Hsu, “CES 2018: Intel’s 49-qubit chip shoots for quantum supremacy,”
in IEEE Spectrum Tech Talk, 2018.

[13] C. John, F. K. Wilhelm, “Superconducting quantum bits,” in Nature,
2008.

[14] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow,
and J. M. Gambetta, “Hardware-efficient variational quantum eigensolver
for small molecules and quantum magnets,” in Nature, 2017.

[15] J. Kelly, “A Preview of Bristlecone, Google’s New Quantum
Processor,” https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-
googles-new.html, Accessed: April 2, 2020.

[16] W. Knight, “IBM raises the bar with a 50-qubit quantum computer,” in
Sighted at MIT Review Technology, 2017.

[17] J. Koch, M. Y. Terri, J. Gambetta, A. A. Houck, D. Schuster, J. Majer,
A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Charge-
insensitive qubit design derived from the Cooper pair box,” in Physical
Review A, 2007.

[18] G. Li, Y. Ding, and Y. Xie, “Tackling the qubit mapping problem
for NISQ-era quantum devices,” in Proceedings of the 24th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2019.

[19] S. Lloyd, M. Mohseni, and P. Rebentrost, “Quantum algorithms for
supervised and unsupervised machine learning,” in arXiv 1307.0411.

[20] N. D. Mermin, “Quantum computer science: an introduction,” Cambridge
University Press, 2007.

[21] P. Murali, J. M. Baker, A. Javadi-Abhari, F. T. Chong, and M. Martonosi,
“Noise-adaptive compiler mappings for noisy intermediate-scale quantum
computers,” in Proceedings of the 24th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2019.

[22] P. Murali, D. C. McKay, M. Martonosi, and A. Javadi-Abhari, “Software
mitigation of crosstalk on noisy intermediate-scale quantum computers,”
in Proceedings of the 25th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS), 2020.

[23] M. E. Newman, “Fast algorithm for detecting community structure in
networks,” in Physical review E, 2004.

[24] S. Nishio, Y. Pan, T. Satoh, H. Amano, and R. Van Meter, “Extracting
Success from IBM’s 20-Qubit Machines Using Error-Aware Compilation,”
in ACM Journal on Emerging Technologies in Computing Systems, 2020.

[25] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love,
A. Aspuru-Guzik, and J. L. O’brien, “A variational eigenvalue solver on
a photonic quantum processor,” in Nature communications, 2014.

[26] J. Preskill, “Quantum Computing in the NISQ era and beyond,” in
Quantum, 2018.

[27] C. Rigetti and M. Devoret, “Fully microwave-tunable universal gates
in superconducting qubits with linear couplings and fixed transition
frequencies,” in Physical Review B, 2010.

[28] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” in SIAM review, 1999.

[29] S. S. Tannu and M. K. Qureshi, “Mitigating measurement errors in quan-
tum computers by exploiting state-dependent bias,” in Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture
(Micro), 2019.

[30] S. S. Tannu and M. K. Qureshi, “Not all qubits are created equal: a
case for variability-aware policies for NISQ-era quantum computers,” in
Proceedings of the 24th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2019.

[31] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler, “Revlib:
An online resource for reversible functions and reversible circuits,” in
38th IEEE International Symposium on Multiple Valued Logic (ISMVL),
2008.

[32] A. Zulehner, A. Paler, and R. Wille, “Efficient mapping of quantum
circuits to the IBM QX architectures,” in IEEE Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2018.

[33] H.-S. Zhong et al., “Quantum computational advantage using photons,”
in Science, 2020.

12

https://www.technologyreview.com/f/614346/ibms-new-53-qubit-quantum-computer-is-the-most-powerful-machine-you-can-use/
https://www.technologyreview.com/f/614346/ibms-new-53-qubit-quantum-computer-is-the-most-powerful-machine-you-can-use/
https://www.technologyreview.com/f/614346/ibms-new-53-qubit-quantum-computer-is-the-most-powerful-machine-you-can-use/
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html

	Introduction
	Background
	Quantum mechanism
	Quantum computers
	Errors on quantum computers
	Quantum programs and Quantum circuits
	Quantum cloud services

	Motivation
	Resource under-utilization – wasting qubits
	More SWAP operations – high SWAP overheads
	Multi-programming workloads can be harmful
	Related work
	Thinking about a New OS for the Quantum Computer

	The Art of Our Design
	The design of a new qubit mapping scheme
	Hierarchy tree construction
	Partition and allocation
	Discussion

	The design of inter-program SWAP
	The advantages of inter-program SWAP
	The design of X-SWAP

	The design of the compilation task scheduler

	Evaluation[-3pt]
	Methodology
	Metrics
	Quantum chips
	Benchmarks
	Baseline

	Evaluation results
	Evaluations on fidelity
	Evaluations on compilation overheads
	Evaluations on the task scheduler (i.e., QuCloud scheduler)

	Conclusion
	References

